A Probabilistic Analysis of Sparse Coded Feature Pooling and Its Application for Image Retrieval

نویسندگان

  • Yunchao Zhang
  • Jing Chen
  • Xiujie Huang
  • Yongtian Wang
  • Rongrong Ji
چکیده

Feature coding and pooling as a key component of image retrieval have been widely studied over the past several years. Recently sparse coding with max-pooling is regarded as the state-of-the-art for image classification. However there is no comprehensive study concerning the application of sparse coding for image retrieval. In this paper, we first analyze the effects of different sampling strategies for image retrieval, then we discuss feature pooling strategies on image retrieval performance with a probabilistic explanation in the context of sparse coding framework, and propose a modified sum pooling procedure which can improve the retrieval accuracy significantly. Further we apply sparse coding method to aggregate multiple types of features for large-scale image retrieval. Extensive experiments on commonly-used evaluation datasets demonstrate that our final compact image representation improves the retrieval accuracy significantly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Sparse-Coded Features for Image Retrieval

State-of-the-art image retrieval systems typically represent an image with a bag of low-level features. Since different images often exhibit different kinds of low-level characteristics, it is desirable to represent an image with multiple types of complementary features. The systems scalability is, however, significantly lowered when increasing the number of feature types, as the amount of data...

متن کامل

Supervised learning of bag-of-features shape descriptors using sparse coding

We present a method for supervised learning of shape descriptors for shape retrieval applications. Many contentbased shape retrieval approaches follow the bag-of-features (BoF) paradigm commonly used in text and image retrieval by first computing local shape descriptors, and then representing them in a ‘geometric dictionary’ using vector quantization. A major drawback of such approaches is that...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015